Trends in Turf Nutrition:

Balancing Environmental Protection and Turf Performance

Dr. J. Bryan Unruh
Extension Turfgrass Specialist
University of Florida/IFAS

UF FLORIDA

Turfgrass Science

Increased Scrutiny

- Environmental activist groups have momentum.
 - General public poorly understands the issues.
- Increasing level of scrutiny over what you do even from those whom you consider allies (i.e., your members).
 - Some, knowingly and unknowingly, are working against the efforts of the green industry.
 - Work to educate your members about the importance of plant nutrition.

UF FLORIDA

Turfgrass Science

BMPs are a Starting Point The goal of fertilizer BMPs is to match nutrient supply with turf requirements and to minimize nutrient losses. Selection of BMPs varies by location, and those chosen for a given golf course are dependent on local soil and climatic conditions, crop, management conditions, and other site specific factors.

Nutrient Use in Florida

- Landscape industry reduced N use by 36% and P use by 29% since 2008.
- Golf industry has increased N use by 45% and P use by 69% since 2008.
 - Likely attributed to bringing the golf course back up to par following the economic downturn.

Bottom line – these numbers are favorable for the golf industry, but . . . increased scrutiny will continue!

Turigrass Science

Trends in Nutrient Management Education

Nutrient Use Efficiency

- Generally defined as yield per unit input of fertilizer.
 - In turf, we don't measure "yield" directly.

4R Nutrient Stewardship

- <u>Right Source</u> Matches fertilizer type to plant needs.
- Right Rate Matches amount of fertilizer to plant
- Right Time Makes nutrients available when plants need them.
- Right Place Keeps nutrients where plants can use them.

4R Nutrient Stewardship

- Right Source
- Right Rate
- Right Time
- · Right Place
 - Source, time, and place are more frequently overlooked and may hold more opportunity for improving performance.

Turfgrass Science

SLAN / BSCR / MLSN

- SLAN = Sufficiency Levels of Available Nutrients
- BSCR = Base Saturation Cation Ratio
- MLSN = Minimum Level for Sustainable Nutrition

UF FLORIDA

Turfgrass Science

What is MLSN?

- Minimum Level for Sustainable Nutrition (MLSN) is a new, more sustainable approach to managing soil nutrient levels.
 - Decreases fertilizer inputs and costs
 - Maintain quality and playability levels
- Developed by PACE Turf (Dr. Larry Stowell and Dr. Wendy Gelernter) and the Asian Turfgrass Center (Dr. Micah Woods).
 - All soil analyses were conducted at Brookside Laboratories.

UF FLORIDA

Turigrass Science

The Goal of MLSN?

 "To provide a scientific and data-based approach to interpreting soil tests for turfgrass sites, making sure that there is a high probability of good turfgrass performance, while minimizing unnecessary application of fertilizer."

UF FLORIDA

Turfgrass Science

What is MLSN?

- From a database of > 17,000 soil samples, 1,500 were selected that were classified as having:
 - Not poor performing turfgrass
 - LOGIC: If turf is good nutrients likely aren't a limiting factor.
 - pH of 5.5 7.5
 - LOGIC: Accurate for a range of elements using the Mehlich 3 soil test extractant.
 - Cation Exchange Capacity < 6 cmol/kg
 - LOGIC: If there is enough of an element to produce good turfgrass in a low CEC soil, then the same amount will be sufficient in a nutrient-rich soil that has a higher CEC.

Turigrass Science

What is MLSN?

- Because all of these soils were producing good turf, one could conclude that all the soils had sufficient nutrients, so anything at or above those nutrient levels would be fine.
- Log-logistic model used to identify the concentration (in ppm) of each nutrient that 10% of the soil samples fell below – but were still performing well.
 - The 10th percentile value is the MLSN soil guideline.

UF FLORIDA

Turfgrass Science

Minimum Levels for Sustainable Nutrition Guidelines

Nutrient	Analytical Test	Conventional Guideline - SLAN (ppm)	MLSN (ppm)
Potassium	Mehlich 3	>110	35
Phosphorus	Mehlich 3	>50	18
Calcium	Mehlich 3	>750	360
Magnesium	Mehlich 3	>140	54
Sulfur	Mehlich 3	15 – 40	13

UF FLORIDA

Turfgrass Science

Before we give her a whirl... • We apply fertilizer to a two-dimensional soil surface (length X width = area). Problem 2.1 Using the geometric method of determining area, determine the area of the green (A), fairway (B + C + D) and the tee (E) for the 435-yard par-4 hole. All dimensions are noted in the figure below.

Before we give her a whirl...

- But soil tests are three dimensional (length X width X depth).
 - One pound of an element (N, P, K, etc.) spread over 1,000 ft² on the surface (two dimensional) is equivalent to:
 - 22 ppm in the root zone (three dimensional) measuring 1,000 ft² to a 6" depth.
 - 33 ppm in the root zone (three dimensional) measuring 1,000 ft² to a 4" depth.

UF FLORIDA

Turfgrass Science

It's early - but let's do some math!

- Acre Furrow Slice (6" depth over an acre) has 21,780 ft³ of soil (43,560 ft² X 0.5 ft).
 - AFS of soil weighs ~ 2,000,000 lbs.
 - Each cubic foot of soil weighs ~ 92 lbs.
- TEE: 1,000 ft² X 0.5 ft (6") = 500 ft³ soil
 - $-500 ft^3 soil \times \frac{92 lbs}{ft^3} = 46,000 lbs soil$
 - $-\frac{1 \text{ lb matrient}}{46,000 \text{ lbs soil}} = \frac{x \text{ lbs matrient}}{1,000,000 \text{ lbs soil}}; X = 22 \text{ ppm}$

Let's give her a whirl...

- Assumptions:
 - The grass cannot use more of an element than it harvests.
 - The growth and nutrient uptake are driven by the amount of nitrogen applied.
 - The concentration of macronutrient and secondary nutrients in the leaves are estimated to be proportional to the applied nitrogen.

UF FLORIDA

Turfgrass Science

Let's give her a whirl...

- Assumptions:
 - The grass cannot use more of an element than it harvests.
 - The growth and nutrient uptake are driven by the amount of nitrogen applied.
 - The concentration of macronutrient and secondary nutrients in the leaves are estimated to be proportional to the applied nitrogen.

Turigrass Science

Evidence, Regulation, and Consequences of Nitrogen-Driven
Nutrient Demand by Turfgrass

• Once the external nutrient supply attains the level where demand is satisfied, tissue nutrient concentrations plateau — little or no change with further increases in nutrient supply.

- Application of additional P and K did not alter clipping P and K content.

Bermudagrass Putting Green Growth, Color, and Nutrient Partitioning Influenced by Nitrogen and Trinexapac-Ethyl

Putrick E. McCullough, Haibo Liu.* Lambort B. McCarty, Ted Whitwell, and Joe E. Toler

• Applied four rates of N with and without Primo to a bermudagrass putting green.

— Primo reduced clippings by 67% over the 4 N rates.

• Did not alter the N required to maintain acceptable turf.

— Nutrient removal by the clippings when Primo was applied was decreased by 70%.

• Clipping production accounted for 83 – 99% of the variation in clipping removals of N, P, K, Ca, Mg, S, Cu, Fe, Mn, and Zn.

Pretty convincing evidence that N supply is a primary factor governing turfgrass nutrient demand. The application of a PGR changes demand in accord with the degree of suppression of turfgrass growth at any given level of N application.

Let's give her a whirl... • Assumptions: - The grass cannot use more of an element than it harvests. - The growth and nutrient uptake are driven by the amount of nitrogen applied. - The concentration of macronutrient and secondary nutrients in the leaves are estimated to be proportional to the applied nitrogen.

0.125

0.125

 Magnesium
 0.2
 0.05

 Sulfur
 0.2
 0.05

 *These values are a good starting point for most turfgrass species. If site specific data are available, those values can be substituted to better site specific management.

0.5

Phosphorus

Calcium

UF FLORIDA Turfgrass Science

SLAN Example

To find how much of an element needs to be added

as fertilizer (F), subtract the actual amount on a soil

 $F = A - Soil_{test}$

- We have tested a putting green and found it to

 $F = 5.84 - 1.67 = 4.17 \, \text{lbs} / 1,000 \, \text{ft}^2$

Turigrass, Scien

contain 55 ppm (1.67 lbs / 1,000 ft²) potassium.

test.

UF FLORIDA

203

